Full metadata record

DC Field Value Language
dc.contributor.authorCho, Hyunjin-
dc.contributor.authorRho, Hokyun-
dc.contributor.authorKim, Jun Hee-
dc.contributor.authorChae, Su-Hyeong-
dc.contributor.authorThang Viet Pham-
dc.contributor.authorSeo, Tae Hoon-
dc.contributor.authorKim, Hak Yong-
dc.contributor.authorHa, Jun-Seok-
dc.contributor.authorKim, Hwan Chul-
dc.contributor.authorLee, Sang Hyun-
dc.contributor.authorKim, Myung Jong-
dc.date.accessioned2024-01-20T00:02:59Z-
dc.date.available2024-01-20T00:02:59Z-
dc.date.created2022-01-10-
dc.date.issued2017-11-22-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122046-
dc.description.abstractThe heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vast area by using the new type of graphene carbon metal composite film as a heat sink. The unique porous graphene-carbon-metal composite film that consists of an electrospun carbon nanofiber with arc-graphene (Arc-G) fillers and an electrochemically deposited copper (Cu) layer showed not only high electrical and thermal conductivity but also high mechanical stability. Accordingly, superior thermal management of LED devices to that of conventional Cu plates and excellent resistance stability during the repeated 10 000 bending cycles has been achieved. The heat dissipation of LEDs has been enhanced by the high heat conduction in the composite film, heat convection in the air flow, and thermal radiation at low temperature in the porous carbon structure. This result reveals that the graphene carbon metal composite film is one of the most promising materials for modern electronics.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectTHERMAL-CONDUCTIVITY-
dc.subjectELECTRICAL-CONDUCTIVITY-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectPOLYMER COMPOSITES-
dc.subjectRAMAN-SPECTROSCOPY-
dc.subjectMATRIX COMPOSITES-
dc.subjectMANAGEMENT-
dc.subjectNANOFIBERS-
dc.subjectGRAPHITE-
dc.subjectOXIDE-
dc.titleGraphene-Carbon-Metal Composite Film for a Flexible Heat Sink-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.7b11485-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.9, no.46, pp.40801 - 40809-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume9-
dc.citation.number46-
dc.citation.startPage40801-
dc.citation.endPage40809-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000416614600103-
dc.identifier.scopusid2-s2.0-85035050769-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHERMAL-CONDUCTIVITY-
dc.subject.keywordPlusELECTRICAL-CONDUCTIVITY-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusPOLYMER COMPOSITES-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusMATRIX COMPOSITES-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusGRAPHITE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordAuthorheat sink-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthorelectroplating-
dc.subject.keywordAuthorcomposite-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE