Full metadata record

DC Field Value Language
dc.contributor.authorSong, Seungwoo-
dc.contributor.authorKim, Donghun-
dc.contributor.authorJang, Hyun Myung-
dc.contributor.authorYeo, Byung Chul-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorKim, Chang Soo-
dc.contributor.authorScott, James F.-
dc.date.accessioned2024-01-20T00:32:57Z-
dc.date.available2024-01-20T00:32:57Z-
dc.date.created2021-09-04-
dc.date.issued2017-09-12-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122292-
dc.description.abstractWe propose a recently discovered material, namely, beta-CuGaO2 [T. Omata et al., J. Am. Chem. Soc. 2014, 136, 3378] as a strong candidate material for efficient ferroelectric photovoltaics (FPVs). According to first-principles predictions exploiting hybrid density functional, beta-CuGaO2 is ferroelectric with a remarkably large remanent polarization of 83.80 mu C/cm(2), even exceeding that of the prototypic FPV material, BiFeO3. Quantitative theoretical analysis further indicates the asymmetric Ga 3d(z)(2)-O 2p(z) hybridization as the origin of the Pna2(1) ferroelectricity. In addition to the large displacive polarization, unusually small band gap (1.47 eV) and resultantly strong optical absorptions additionally differentiate beta-CuGaO2 from conventional ferroelectrics; this material is expected to overcome critical limitations of currently available FPVs.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectGAP OXIDE SEMICONDUCTOR-
dc.subjectOPTICAL-PROPERTIES-
dc.subjectBAND-GAP-
dc.subjectHEXAGONAL FERROELECTRICITY-
dc.subjectLITHIUM-NIOBATE-
dc.subjectEFFECTIVE-MASS-
dc.subjectTHIN-
dc.subjectABSORPTION-
dc.subject1ST-PRINCIPLES-
dc.subjectPOLARIZATION-
dc.titlebeta-CuGaO2 as a Strong Candidate Material for Efficient Ferroelectric Photovoltaics-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.7b03141-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.29, no.17, pp.7596 - 7603-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume29-
dc.citation.number17-
dc.citation.startPage7596-
dc.citation.endPage7603-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000410868600065-
dc.identifier.scopusid2-s2.0-85029280672-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusGAP OXIDE SEMICONDUCTOR-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusBAND-GAP-
dc.subject.keywordPlusHEXAGONAL FERROELECTRICITY-
dc.subject.keywordPlusLITHIUM-NIOBATE-
dc.subject.keywordPlusEFFECTIVE-MASS-
dc.subject.keywordPlusTHIN-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlus1ST-PRINCIPLES-
dc.subject.keywordPlusPOLARIZATION-
dc.subject.keywordAuthorFerroelectrics-
dc.subject.keywordAuthorPhotovoltaics-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE