Sulfur vacancy-induced reversible doping of transition metal disulfidesvia hydrazine treatment

Authors
Chee, Sang-SooOh, ChoheeSon, MyungwooSon, Gi-CheolJang, HanbyeolYoo, Tae JinLee, SeungminLee, WonkiHwang, Jun YeonChoi, HyunyongLee, Byoung HunHam, Moon-Ho
Issue Date
2017-07-21
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.9, no.27, pp.9333 - 9339
Abstract
Chemical doping of transition metal dichalcogenides (TMDCs) has drawn significant interest because of its applicability to the modification of electrical and optical properties of TMDCs. This is of fundamental and technological importance for high-efficiency electronic and optoelectronic devices. Here, we present a simple and facile route to reversible and controllable modulation of the electrical and optical properties of WS2 and MoS2 via hydrazine doping and sulfur annealing. Hydrazine treatment of WS2 improves the field-effect mobilities, on/off current ratios, and photoresponsivities of the devices. This is due to the surface charge transfer doping of WS2 and the sulfur vacancies formed by its reduction, which result in an n-type doping effect. The changes in the electrical and optical properties are fully recovered when the WS2 is annealed in an atmosphere of sulfur. This method for reversible modulation can be applied to other transition metal disulfides including MoS2, which may enable the fabrication of twodimensional electronic and optoelectronic devices with tunable properties and improved performance.
Keywords
MOLYBDENUM-DISULFIDE; ELECTRICAL-PROPERTIES; MONOLAYER MOS2; TRANSISTORS; DICHALCOGENIDES; REDUCTION; GRAPHENE; DRIVEN; DEFECT; MOLYBDENUM-DISULFIDE; ELECTRICAL-PROPERTIES; MONOLAYER MOS2; TRANSISTORS; DICHALCOGENIDES; REDUCTION; GRAPHENE; DRIVEN; DEFECT; graphene; optoelectronics
ISSN
2040-3364
URI
https://pubs.kist.re.kr/handle/201004/122511
DOI
10.1039/c7nr01883e
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE