Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field

Authors
Yun, Kang-SeopPai, Sung JinYeo, Byung ChulLee, Kwang-RyeolKim, Sun-JaeHan, Sang Soo
Issue Date
2017-07
Publisher
American Chemical Society
Citation
The Journal of Physical Chemistry Letters, v.8, no.13, pp.2812 - 2818
Abstract
We propose the ReaxFF reactive force field as a simulation protocol for predicting the evolution of solid-electrolyte interphase (SEI) components such as gases (C2H4, CO, CO2, CH4, and C2H6), and inorganic (Li2CO3, Li2O, and LiF) and organic (ROLi and ROCO2Li: R = -CH3 or -C2H5) products that are generated by the chemical reactions between the anodes and liquid electrolytes. Re-IYFF was developed from ab initio results, and a molecular dynamics simulation with ReaxFF realized the prediction of SEI formation under real experimental conditions and with a reasonable computational cost. We report the effects on SEI formation of different kinds of Si anodes (pristine Si and SiOx), of the different types and compositions of various carbonate electrolytes, and of the additives. From the results, we expect that ReaxFF will be very useful for the development of novel electrolytes or additives and for further advances in Li-ion battery technology.
Keywords
VINYLENE CARBONATE VC; LI-ION; FLUOROETHYLENE CARBONATE; MOLECULAR-DYNAMICS; REDUCTION-MECHANISMS; ETHYLENE CARBONATE; SURFACE-CHEMISTRY; SI ANODES; ELECTROCHEMICAL PERFORMANCE; GRAPHITE ANODES; Lithium-ion battery; Solid-electrolyte interphase; Silicon anode; Reactive force field; Simulation; Molecular dynamics
ISSN
1948-7185
URI
https://pubs.kist.re.kr/handle/201004/122598
DOI
10.1021/acs.jpclett.7b00898
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE