Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy

Authors
Hwang, SooyeonLee, YonghoJo, EunmiChung, Kyung YoonChoi, WonchangKim, Seung MinChang, Wonyoung
Issue Date
2017-06-07
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.9, no.22, pp.18883 - 18888
Abstract
Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type NaxCoO2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction, patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co3O4), CoO) and even metallic cobalt,(Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of NaxCoO2, becomes porous at high temperatures. Higher, cutoff voltages result in degrading thermal stability of NaxCoO2. The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing, new electrode materials for novel battery systems.
Keywords
SPECTROSCOPY; NACRO2; CHARGE; SPECTROSCOPY; NACRO2; CHARGE; sodium ion batteries; cathode materials; thermal stability; NaCoO2; transmission electron microscopy; in situ heating
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/122638
DOI
10.1021/acsami.7b04478
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE