Full metadata record

DC Field Value Language
dc.contributor.authorAqoma, Havid-
dc.contributor.authorAl Mubarok, Muhibullah-
dc.contributor.authorHadmojo, Wisnu Tantyo-
dc.contributor.authorLee, Eun-Hye-
dc.contributor.authorKim, Tae-Wook-
dc.contributor.authorAhn, Tae Kyu-
dc.contributor.authorOh, Seung-Hwan-
dc.contributor.authorJang, Sung-Yeon-
dc.date.accessioned2024-01-20T01:31:58Z-
dc.date.available2024-01-20T01:31:58Z-
dc.date.created2021-09-01-
dc.date.issued2017-05-17-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122730-
dc.description.abstractColloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectCOLLOIDAL PBS NANOCRYSTALS-
dc.subjectLEAD HALIDE PEROVSKITES-
dc.subjectPROCESSED SOLAR-CELLS-
dc.subjectSUB-BANDGAP STATES-
dc.subjectTHIN-FILMS-
dc.subjectPERFORMANCE-
dc.subjectSOLIDS-
dc.subjectPASSIVATION-
dc.subjectSURFACE-
dc.subjectLAYERS-
dc.titleHigh-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange-
dc.typeArticle-
dc.identifier.doi10.1002/adma.201605756-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.29, no.19-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume29-
dc.citation.number19-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000401170600007-
dc.identifier.scopusid2-s2.0-85014591188-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOLLOIDAL PBS NANOCRYSTALS-
dc.subject.keywordPlusLEAD HALIDE PEROVSKITES-
dc.subject.keywordPlusPROCESSED SOLAR-CELLS-
dc.subject.keywordPlusSUB-BANDGAP STATES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordPlusPASSIVATION-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordAuthorphase-transfer exchange-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorsolar cells-
dc.subject.keywordAuthorsurface traps-
dc.subject.keywordAuthorvoltage loss-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE