Full metadata record

DC Field Value Language
dc.contributor.authorYeo, Hyeonuk-
dc.contributor.authorIslam, Akherul Md.-
dc.contributor.authorYou, Nam-Ho-
dc.contributor.authorAhn, Seokhoon-
dc.contributor.authorGoh, Munju-
dc.contributor.authorHahn, Jae Ryang-
dc.contributor.authorJang, Se Gyu-
dc.date.accessioned2024-01-20T02:01:23Z-
dc.date.available2024-01-20T02:01:23Z-
dc.date.created2021-09-01-
dc.date.issued2017-03-22-
dc.identifier.issn0266-3538-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/122942-
dc.description.abstractAs a promising matrix for developing efficient heat-dissipating materials, liquid crystalline epoxy resins (LCERs) have received much attention for a decade. Here, we present a comprehensive study including the synthesis, fabrication, and characterization of polymer/inorganic composites with a representative LCER, 4,4'-diglycidyloxybiphenyl (BP) epoxy. The thermal conducting properties of composites are systematically investigated by preparing a series of samples with various epoxy resins and alumina fillers. Notably, liquid crystalline BP composites show approximately 30% higher thermal conductivity compared to the composites of commercial epoxy with the same type of filler owing to the highly aligned microstructure of the LCER. In addition, the threshold loading of filler content required to construct an effective thermally conducting path in our system is in the range of 40-50 wt%. Furthermore, the thermal conductivity of BP composites can be controlled by incorporating various fillers differentiated by size and shape. In particular, the highest thermal conductivity among the BP composites with 80 wt% content of alumina is 6.66 W/m.K, which is significantly high for epoxy/alumina composites. The experimental results which agree well with the theory by Agari model reveal that the highly aligned microstructure of the LCER is essential requirement that should be considered to improve thermal conductivity of composites. 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectBORON-NITRIDE-
dc.subjectCOMPOSITES-
dc.subjectPOLYMERS-
dc.subjectNANOCOMPOSITES-
dc.subjectLIGHTWEIGHT-
dc.subjectCONSTANTS-
dc.subjectSTRENGTH-
dc.subjectSILICON-
dc.subjectSYSTEM-
dc.subjectRESIN-
dc.titleCharacteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties-
dc.typeArticle-
dc.identifier.doi10.1016/j.compscitech.2017.01.016-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPOSITES SCIENCE AND TECHNOLOGY, v.141, pp.99 - 105-
dc.citation.titleCOMPOSITES SCIENCE AND TECHNOLOGY-
dc.citation.volume141-
dc.citation.startPage99-
dc.citation.endPage105-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000395957500012-
dc.identifier.scopusid2-s2.0-85010289518-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusBORON-NITRIDE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusLIGHTWEIGHT-
dc.subject.keywordPlusCONSTANTS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusRESIN-
dc.subject.keywordAuthorEpoxy-
dc.subject.keywordAuthorLiquid crystal-
dc.subject.keywordAuthorAlumina-
dc.subject.keywordAuthorThermal conductivity-
dc.subject.keywordAuthorHeat dissipation-
Appears in Collections:
KIST Article > 2017
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE