Spontaneously restored electrical conductivity of bioactive gel comprising mussel adhesive protein-coated carbon nanotubes

Authors
Lee, HyunjungHa, Yu-MiLee, Sang HyunKo, Young-ilMuramatsu, HiroyukiKim, Yoong AhmPark, MinJung, Yong Chae
Issue Date
2016-09
Publisher
ROYAL SOC CHEMISTRY
Citation
RSC ADVANCES, v.6, no.90, pp.87044 - 87048
Abstract
We demonstrated the pH-mediated self-healing performance of an electrically conductive gel comprising mussel adhesive proteins (MAPs) and carbon nanotubes (CNTs). We observed that optically strong and electrically conductive CNTs are dispersed stably in an aqueous solution with a homogeneous coating of MAPs and they are agglomerated reversibly via a sol-gel phase transition. The formation of the coordination bonding between MAPs and metal ions upon pH change was confirmed based on the optical studies of the inner tubes of the DWNTs. The hybrid gel with relatively good electrical conductivity (1.5 x 10(-3) S m(-1)) exhibited self-repaired electrical conductivity under repetitive mechanical cutting. The material prepared in this work is potentially useful in wearable electronics and biosensors as well as in medical adhesives, where electrical conductivity, a self-healing ability and good biocompatibility are simultaneously required.
Keywords
CHEMISTRY; COMPOSITES; HYDROGELS; POLYMER; CHEMISTRY; COMPOSITES; HYDROGELS; POLYMER; self healing; mussel protein; doublewalled carbon nanotubes; dopamin; electrical conductivity; sol?gel phase
ISSN
2046-2069
URI
https://pubs.kist.re.kr/handle/201004/123754
DOI
10.1039/c6ra19468k
Appears in Collections:
KIST Article > 2016
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE