Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin

Authors
Lee, Chang-GuJeon, Jun-WooHwang, Min-JinAhn, Kyu-HongPark, ChanhyukChoi, Jae-WooLee, Sang-Hyup
Issue Date
2015-07
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CHEMOSPHERE, v.130, pp.59 - 65
Abstract
Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59 m(2) g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50 mg L-1). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491 mg g(-1) and 247 mg g-1. The obtained pore diffusion coefficients for lead and copper were found to be 1.02 x 10(-6) and 2.42 x 10(-7) m(2) s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
WASTE-WATER; ION ADSORPTION; HEAVY-METALS; WASTEWATERS; PRECURSORS; GRAPHITE; CADMIUM; STORAGE; PB(II); COBALT; Carbon foam; Lead removal; Copper removal; Batch experiments; Surface precipitation
ISSN
0045-6535
URI
https://pubs.kist.re.kr/handle/201004/125294
DOI
10.1016/j.chemosphere.2015.02.055
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE