Highly Stable Polymer Solar Cells Based on Poly(dithienobenzodithiophene-co-thienothiophene)

Authors
Shin, NaraYun, Hui-JunYoon, YoungwoonSon, Hae JungJu, Sang-YongKwon, Soon-KiKim, BongSooKim, Yun-Hi
Issue Date
2015-06-23
Publisher
AMER CHEMICAL SOC
Citation
MACROMOLECULES, v.48, no.12, pp.3890 - 3899
Abstract
It is important to develop new denor (D)acceptor (A) type low band gap polymers for highly stable polymer solar cells (PSCs). Here, we describe the synthesis and photovoltaic properties of two D-A type low band gap polymers. The polymers consist of dithienobentodfthiophene (DTBDT) moieties with expanded conjugation side: groups as donors and 2-ethyl-1-(thieno[3,4-b]thiophen-2yl)hwtan-1-one (TTEH) or 6-octyl-5H-thieno[3',4':4,5]thieno[2,3-c]pyrrole-5,7(6H)-dione (DTPD) as acceptors to give pDTBDT-TTEH and pDTBDT-DTPD polymers, respectively. The pDTBDT-TTEH is quite flat, resulting in a highly crystalline film. In contrast, the pDTBDT-DTPD is highly twisted to yield an amorphous film. Photovoltaic devices based on pDTBDT-TTEH and pDTBDT-DTPD exhibited power conversion efficiencies (PCEs) of 6.74% and 4.44%, respectively. The PCE difference results mainly from morphological differences between the two polymer:PC71BM blend films; the pDTBDT-TTEH polymer formed a nanoscopically networked domains in the blend state, while the pDTBDT-DTPD polymer film contained aggregated domains with large phase separation between the poly-mer and PC71BM molecules. Importantly, we observed that pDTBDT-TTEH-based devices showed excellent stability-in air, retaining 95% of the initial PCE after storage for over 1000 h without encapsulation. The high stability of the pDTBDT-TTEH-based device was originated mainly by the crystalline nature of the pDTBDT-TTEH:PC71BM film. This work suggests that designing highly conjugated planar backboned polymers is crucial to improve not only the photovoltaic performance but also the stability of PSCs.
Keywords
BAND-GAP POLYMERS; EFFICIENCY; COPOLYMERS; AGGREGATION; SUBSTITUENT; TRANSPORT; BLEND; BAND-GAP POLYMERS; EFFICIENCY; COPOLYMERS; AGGREGATION; SUBSTITUENT; TRANSPORT; BLEND
ISSN
0024-9297
URI
https://pubs.kist.re.kr/handle/201004/125323
DOI
10.1021/acs.macromol.5b00514
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE