Full metadata record

DC Field Value Language
dc.contributor.authorJi, Jun Ho-
dc.contributor.authorKim, Jong Bum-
dc.contributor.authorLee, Gwangjae-
dc.contributor.authorNoh, Jung-Hun-
dc.contributor.authorYook, Se-Jin-
dc.contributor.authorCho, So-Hye-
dc.contributor.authorBae, Gwi-Nam-
dc.date.accessioned2024-01-20T07:01:12Z-
dc.date.available2024-01-20T07:01:12Z-
dc.date.created2021-09-05-
dc.date.issued2015-06-
dc.identifier.issn2314-6133-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/125361-
dc.description.abstractMany researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD).-
dc.languageEnglish-
dc.publisherHINDAWI LTD-
dc.subjectCARBON NANOTUBE-
dc.subjectTIO2-
dc.subjectFINE-
dc.titleWorkplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System-
dc.typeArticle-
dc.identifier.doi10.1155/2015/524283-
dc.description.journalClass1-
dc.identifier.bibliographicCitationBIOMED RESEARCH INTERNATIONAL, v.2015-
dc.citation.titleBIOMED RESEARCH INTERNATIONAL-
dc.citation.volume2015-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000356269000001-
dc.identifier.scopusid2-s2.0-84935019901-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON NANOTUBE-
dc.subject.keywordPlusTIO2-
dc.subject.keywordPlusFINE-
dc.subject.keywordAuthorworkplace-
dc.subject.keywordAuthorexposure-
dc.subject.keywordAuthortitanium dioxide-
dc.subject.keywordAuthornanopowder-
dc.subject.keywordAuthorbag filter system-
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE