Reduction of Initial Corrosion Rate and Improvement of Cell Adhesion Through Surface Modification of Biodegradable Mg Alloy

Authors
Han, Hyung-SeopLee, Sun HeeKim, Won-JooJeon, HojeongSeok, Hyun-KwangAhn, Jae-PyungKim, Yu-Chan
Issue Date
2015-01
Publisher
KOREAN INST METALS MATERIALS
Citation
METALS AND MATERIALS INTERNATIONAL, v.21, no.1, pp.194 - 201
Abstract
In this study, the surface modification of biodegradable pure Magnesium and Mg-5wt%Ca-1 wt%Zn alloy was performed through immersion in HBSS, inorganic salt solution and cell media to reduce initial hydrogen evolution and improve cell adhesion. The formation of different CaP-like coatings from immersion of pure Mg and Mg alloy were observed using Cryo FM analysis and their performances were measured through cell adhesion, quantification of released Mg ions, and cell cytotoxicity assays. The coating layers displayed significant reduction of initial corrosion rate, and cell adhesion for both pure Mg and Mg alloy appeared to be influenced by the amino acids and proteins in the cell media. In general, Mg alloy showed a denser coating layer with higher Ca contents, resulting in greater reduction of initial corrosion rate and improved cell adhesion, when compared to pure Mg. This is due to saturation of Ca around the corrosion site that provided much favorable environmental condition to produce denser calcium phosphate coating mixture. The result from this study suggests that the surface modification of biodegradable Mg alloy by immersion in alkaline solutions can be utilized to obtain ideal biodegradable orthopedic implant material with reduced initial hydrogen evolution rate and improved cell adhesion.
Keywords
PURE MAGNESIUM; ORTHOPEDIC IMPLANTS; AMINO-ACIDS; IN-VITRO; DEGRADATION; TITANIUM; SUSCEPTIBILITY; BIOMATERIAL; BEHAVIOR; BONE; PURE MAGNESIUM; ORTHOPEDIC IMPLANTS; AMINO-ACIDS; IN-VITRO; DEGRADATION; TITANIUM; SUSCEPTIBILITY; BIOMATERIAL; BEHAVIOR; BONE; biomaterials; metals; alloys; surface modification; corrosion; focused ion beam
ISSN
1598-9623
URI
https://pubs.kist.re.kr/handle/201004/125945
DOI
10.1007/s12540-015-1024-6
Appears in Collections:
KIST Article > 2015
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE