Full metadata record

DC Field Value Language
dc.contributor.authorKim, Sung Wook-
dc.contributor.authorLee, Jaejun-
dc.contributor.authorSung, Ji Ho-
dc.contributor.authorSeo, Dong-jae-
dc.contributor.authorKim, Ilsoo-
dc.contributor.authorJo, Moon-Ho-
dc.contributor.authorKwon, Byoung Wook-
dc.contributor.authorChoi, Won Kook-
dc.contributor.authorChoi, Heon-Jin-
dc.date.accessioned2024-01-20T09:31:44Z-
dc.date.available2024-01-20T09:31:44Z-
dc.date.created2021-09-05-
dc.date.issued2014-07-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126626-
dc.description.abstractSince the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectMOS2 ATOMIC LAYERS-
dc.subjectQUANTUM DOTS-
dc.subjectHYDROGEN-
dc.subjectDESORPTION-
dc.subjectMECHANISM-
dc.titleTwo-Dimensionally Grown Single-Crystal Silicon Nanosheets with Tunable Visible-Light Emissions-
dc.typeArticle-
dc.identifier.doi10.1021/nn501683f-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS NANO, v.8, no.7, pp.6556 - 6562-
dc.citation.titleACS NANO-
dc.citation.volume8-
dc.citation.number7-
dc.citation.startPage6556-
dc.citation.endPage6562-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000339463100008-
dc.identifier.scopusid2-s2.0-84904717690-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOS2 ATOMIC LAYERS-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordPlusDESORPTION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordAuthorSi nanosheets-
dc.subject.keywordAuthor2D growth-
dc.subject.keywordAuthorthickness-dependent photoluminescence-
dc.subject.keywordAuthortunable emission-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE