Full metadata record

DC Field Value Language
dc.contributor.authorBorkar, Tushar-
dc.contributor.authorSosa, John-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorScharf, Thomas W.-
dc.contributor.authorTiley, Jaimie-
dc.contributor.authorFraser, Hamish-
dc.contributor.authorBanerjee, Rajarshi-
dc.date.accessioned2024-01-20T09:34:08Z-
dc.date.available2024-01-20T09:34:08Z-
dc.date.created2021-09-05-
dc.date.issued2014-06-
dc.identifier.issn1047-4838-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126748-
dc.description.abstractA new class of Ni-Ti-C-based metal-matrix composites has been developed using the laser-engineered net shaping (TM) process. These composites consist of an in situ formed and homogeneously distributed titanium carbide (TiC) phase reinforcing the nickel matrix. Additionally, by tailoring the Ti/C ratio in these composites, an additional graphitic phase can also be engineered into the microstructure. Serial-sectioning, followed by three-dimensional reconstruction of the microstructure in these composites, reveals homogeneously distributed primary and eutectic titanium carbide precipitates as well as a graphitic phase encompassing the primary carbides within the nickel matrix. The morphology and spatial distribution of these phases in three dimensions reveals that the eutectic carbides form a network linked by primary carbides or graphitic nodules at the nodes, which suggests interesting insights into the sequence of phase evolution. These three-phase Ni-TiC-C composites exhibit excellent tribological properties, in terms of an extremely low coefficient of friction while maintaining a relatively high hardness.-
dc.languageEnglish-
dc.publisherSPRINGER-
dc.titleLaser-Deposited In Situ TiC-Reinforced Nickel Matrix Composites: 3D Microstructure and Tribological Properties-
dc.typeArticle-
dc.identifier.doi10.1007/s11837-014-0907-1-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOM, v.66, no.6, pp.935 - 942-
dc.citation.titleJOM-
dc.citation.volume66-
dc.citation.number6-
dc.citation.startPage935-
dc.citation.endPage942-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000336727700012-
dc.identifier.scopusid2-s2.0-84904507262-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMineralogy-
dc.relation.journalWebOfScienceCategoryMining & Mineral Processing-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMineralogy-
dc.relation.journalResearchAreaMining & Mineral Processing-
dc.type.docTypeArticle-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthor3D characterization-
dc.subject.keywordAuthorMetal matrix composite-
dc.subject.keywordAuthorLaser process-
dc.subject.keywordAuthorTribology-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE