Microstructural adjustment of Ni-BaCe0.9Y0.1O3-delta cermet membrane for improved hydrogen permeation

Authors
Kim, HyejinKim, BoyoungLee, JongheunAhn, KiyongKim, Hae-RyoungYoon, Kyung JoongKim, Byung-KookCho, Young WhanLee, Hae-WeonLee, Jong-Ho
Issue Date
2014-04
Publisher
ELSEVIER SCI LTD
Citation
CERAMICS INTERNATIONAL, v.40, no.3, pp.4117 - 4126
Abstract
Dense ceramic membranes are usually hybridized with an electronically conductive metallic phase to enhance their hydrogen permeation fluxes, thereby increasing the hydrogen-production efficiency of hydrogen separation membranes. Herein, the hydrogen-separation properties of membranes fabricated from cermets containing BaCe0.9Y0.1O3-delta (BCY) as the proton-conducting ceramic phase and Ni as the electronic-conducting metal phase were investigated with respect to the compositions of the Ni-BCY mixture. Because the hydrogen permeability of a cermet membrane is seriously affected by rnicrostructural parameters such as grain size and homogeneity of the cermet mixture used to fabricate it, we tried to optimize the microstructures and compositions of the Ni-BCY cermets by controlling their fabrication conditions. A high-energy milling process was employed to fabricate fine-grained, dense membranes that exhibited high levels of mixing homogeneity. From the adjustment of composition and microstructure of Ni-BCY composites, the hydrogen permeability of Ni-BCY cermet membranes can be significantly increased so that hydrogen fluxes of similar to 0.76 cm(3)/(min cm(2)) at 800 degrees C can be achieved. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Keywords
PROTON CONDUCTORS; GAS; GENERATION; SEPARATION; PROTON CONDUCTORS; GAS; GENERATION; SEPARATION; Ceramic membranes; Proton conductor; Cermets; Hydrogen permeation; High-energy milling
ISSN
0272-8842
URI
https://pubs.kist.re.kr/handle/201004/126956
DOI
10.1016/j.ceramint.2013.08.066
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE