Full metadata record

DC Field Value Language
dc.contributor.authorYeo, Sang Chul-
dc.contributor.authorHan, Sang Soo-
dc.contributor.authorLee, Hyuck Mo-
dc.date.accessioned2024-01-20T10:04:08Z-
dc.date.available2024-01-20T10:04:08Z-
dc.date.created2021-09-05-
dc.date.issued2014-03-13-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/126998-
dc.description.abstractCatalytic decomposition of ammonia (NH3) is a promising chemical reaction in energy and environmental applications. Density functional theory (DFT) calculations were performed to clarify the detailed catalytic mechanism of NH3 decomposition on an Fe(100) surface. Specifically, the elementary steps of the mechanism were calculated for the general dehydrogenation pathway of NH3. The adsorption of two types of ammonia dimers (2NH(3)), locally adsorbed NH3 and hydrogen-bonded NH3, were then compared, revealing that locally adsorbed NH3 is more stable than hydrogen-bonded NH3. By contrast, the dehydrogenation of dimeric NH3 results in a high energy barrier. Moreover, the catalytic characteristics of NH3 decomposition on a nitrogen (N)-covered Fe surface must be considered because the recombination of nitrogen (N-2) and desorption have an extremely high energy barrier. Our results indicate that the catalytic characteristics of the NH3 decomposition reaction are altered by N coverage of the Fe surface. This study primarily focused on energetic and electronic analysis. Finally, we conclude that Fe is an alternative catalyst for the decomposition of NH3 in COX-free hydrogen production.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectDENSITY-FUNCTIONAL THEORY-
dc.subject1ST PRINCIPLES-
dc.subjectHYDROGEN-PRODUCTION-
dc.subjectAB-INITIO-
dc.subjectN-2 DISSOCIATION-
dc.subjectBCC FE-
dc.subjectADSORPTION-
dc.subjectDIFFUSION-
dc.subjectKINETICS-
dc.subject1ST-PRINCIPLES-
dc.titleMechanistic Investigation of the Catalytic Decomposition of Ammonia (NH3) on an Fe(100) Surface: A DFT Study-
dc.typeArticle-
dc.identifier.doi10.1021/jp410947d-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry C, v.118, no.10, pp.5309 - 5316-
dc.citation.titleThe Journal of Physical Chemistry C-
dc.citation.volume118-
dc.citation.number10-
dc.citation.startPage5309-
dc.citation.endPage5316-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000333005700028-
dc.identifier.scopusid2-s2.0-84896353037-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlus1ST PRINCIPLES-
dc.subject.keywordPlusHYDROGEN-PRODUCTION-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusN-2 DISSOCIATION-
dc.subject.keywordPlusBCC FE-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlus1ST-PRINCIPLES-
dc.subject.keywordAuthorCatalytic decomposition-
dc.subject.keywordAuthorAmmonia-
dc.subject.keywordAuthorFe surface-
dc.subject.keywordAuthorDensity functional theory-
Appears in Collections:
KIST Article > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE