Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres

Authors
Kim, JonghakWoo, HeejeJoo, KisuTae, SungwonPark, JinsubMoon, DaeyoungPark, Sung HyunJang, JunghwanCho, YigilPark, JucheolYuh, HwankukLee, Gun-DoChoi, In-SukNanishi, YasushiHan, Heung NamChar, KookheonYoon, Euijoon
Issue Date
2013-11-13
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.3
Abstract
Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy for high efficiency LEDs by incorporating silica hollow nanospheres (S-HNS). In this strategy, S-HNSs were introduced as a monolayer on a sapphire substrate and the subsequent growth of GaN by metalorganic chemical vapor deposition results in improved crystal quality due to nano-scale lateral epitaxial overgrowth. Moreover, well-defined voids embedded at the GaN/sapphire interface help scatter lights effectively for improved light extraction, and reduce wafer bowing due to partial alleviation of compressive stress in GaN. The incorporation of S-HNS into LEDs is thus quite advantageous in achieving high efficiency LEDs for solid-state lighting.
Keywords
LATERAL EPITAXY; GROWTH; FILMS; STRESSES; LAYERS; LATERAL EPITAXY; GROWTH; FILMS; STRESSES; LAYERS; Mechanical engineering; Inorganic LEDs; Nanoparticles; Electronic properties and materials
ISSN
2045-2322
URI
https://pubs.kist.re.kr/handle/201004/127441
DOI
10.1038/srep03201
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE