Microstructure refinement of pulsed laser deposited La0.6Sr0.4CoO3-delta thin-film cathodes for solid oxide fuel cell

Authors
Hwang, JaeyeonLee, HeonYoon, Kyung JoongLee, Hae-WeonLee, Jong-HoSong, Hue-SupSon, Ji-Won
Issue Date
2013-11
Publisher
KOREAN INST METALS MATERIALS
Citation
METALS AND MATERIALS INTERNATIONAL, v.19, no.6, pp.1347 - 1349
Abstract
In this study, the microstructural modification of pulsed laser deposited La0.6Sr0.4CoO3-delta (LSC64) thin-film cathodes for solid oxide fuel cells (SOFCs) to improve the lateral conduction and to reduce the surface composition degradation is investigated. A high-temperature deposited 100 nm-thick denser LSC64 layer is added over 2.4 mu m-thick porous cathode to cover and bridge the cathode domains. According to the cell performance analyses using current-voltage-power measurements, the performance of the cell modified with an additional denser layer is increased compared with the cell without the denser layer in all operating temperature range. The degree of improvement of peak power density is bigger than 10% at 650-550 A degrees C and is about 6% at 500 A degrees C. This performance enhancement can be attributed to the electrochemical property improvement, especially oxygen surface exchange property, rather than to the conduction improvement, based on the electrochemical impedance analysis. Improved crystallinity and composition integrity of the denser LSC64 layer is considered to enhance the surface exchange property of the cathode.
Keywords
OXYGEN-REDUCTION; ELECTRODES; COMPOSITE; OXYGEN-REDUCTION; ELECTRODES; COMPOSITE; solid oxide fuel cell; pulsed laser deposition; cathode; surface modification
ISSN
1598-9623
URI
https://pubs.kist.re.kr/handle/201004/127508
DOI
10.1007/s12540-013-0638-9
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE