Efficient organic solar cells with solution-processed carbon nanosheets as transparent electrodes

Authors
Na, Seok-InNoh, Yong-JinSon, Su-YoungKim, Tae-WookKim, Seok-SoonLee, SunghoJoh, Han-Ik
Issue Date
2013-01-28
Publisher
AMER INST PHYSICS
Citation
APPLIED PHYSICS LETTERS, v.102, no.4
Abstract
We demonstrate that solution-processed carbon nanosheet (CNS) films can efficiently serve as transparent electrodes for organic solar cells (OSCs). The CNS was obtained by spin-coating of polyacrylonitrile (PAN) dissolved in dimethylformamide on quartz substrates, followed by stabilization and carbonization processes to convert polymer into CNS. The thickness of the newly developed CNS films was easily controlled by varying the PAN solution concentration. The polymer-converted CNS films were intensively examined for the feasibility of the use as transparent anodes in solar cells. This approach could be highly desirable for all-solution-processed or printed OSCs. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789980]
Keywords
REDUCED GRAPHENE OXIDE; POLYMER; FILMS; CONDUCTIVITY; LAYERS; REDUCED GRAPHENE OXIDE; POLYMER; FILMS; CONDUCTIVITY; LAYERS; carbon nanosheet; graphene; organic solar cell; transparent eletrode; polyacrylonitrile
ISSN
0003-6951
URI
https://pubs.kist.re.kr/handle/201004/128435
DOI
10.1063/1.4789980
Appears in Collections:
KIST Article > 2013
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE