Synthesis and electrochemical properties of spinel Li4Ti5O12-x Cl (x) anode materials for lithium-ion batteries

Authors
Huang, YudaiQi, YanlingJia, DianzengWang, XingchaoGuo, ZaipingCho, Won Il
Issue Date
2012-05
Publisher
SPRINGER
Citation
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, v.16, no.5, pp.2011 - 2016
Abstract
Li4Ti5O12-x Cl (x) (0 acurrency signaEurox acurrency signaEuro0.3) compounds were synthesized successfully via high temperature solid-state reaction. X-ray diffraction and scanning electron microscopy were used to characterize their structure and morphology. Cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge cycling performance tests were used to characterize their electrochemical properties. The results showed that the Li4Ti5O12-x Cl (x) (0 acurrency signaEurox acurrency signaEuro0.3) compounds were well-crystallized pure spinel phase and that the grain sizes of the samples were about 3-8 mu m. The Li4Ti5O11.8Cl0.2 sample presented the best discharge capacity among all the samples and showed better reversibility and higher cyclic stability compared with pristine Li4Ti5O12. When the discharge rate was 0.5 C, the Li4Ti5O11.8Cl0.2 sample presented the superior discharge capacity of 148.7 mAh g(-1), while that of the pristine Li4Ti5O12 was 129.8 mAh g(-1); when the discharge rate was 2 C, the Li4Ti5O11.8Cl0.2 sample presented the discharge capacity of 120.7 mAh g(-1), while that of the pristine Li4Ti5O12 was only 89.8 mAh g(-1).
Keywords
ELECTRODE MATERIALS; COMPOSITE; DOPANT; CELLS; MG; ELECTRODE MATERIALS; COMPOSITE; DOPANT; CELLS; MG; Li4Ti5O12-xClx; Anode materials; Solid-state reaction; Lithium-ion batteries
ISSN
1432-8488
URI
https://pubs.kist.re.kr/handle/201004/129286
DOI
10.1007/s10008-011-1611-5
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE