Thermohydrodynamic analysis of bump-type gas foil bearings using bump thermal contact and inlet flow mixing models

Authors
Sim, KyuhoKim, Tae Ho
Issue Date
2012-04
Publisher
ELSEVIER SCI LTD
Citation
TRIBOLOGY INTERNATIONAL, v.48, pp.137 - 148
Abstract
Implementation of gas foil bearings (GFBs) in high-temperature applications requires a reliable thermal model that accounts for heat transfers within the rotor - GFB system. The proposed thermohydrodynamic (THD) model takes into account energy transports in air film, heat conductions of shaft, thermal resistance of bump layer, and heat conduction in GFB housing. The model also incorporates analytical models for bump thermal contact and inlet flow mixing to improve the prediction accuracy. Published experimental test data benchmark the THD model predictions. Finally, this paper proposes a new GFB cooling scheme, i.e., supplying a cooling flow radially into the inlet flow mixing zone. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords
PAD JOURNAL BEARINGS; HEAT-TRANSFER; PAD JOURNAL BEARINGS; HEAT-TRANSFER; Gas foil bearings (GFBs); Thermohydrodynamic (THD) analysis; Thermal contact resistance (TCR); Inlet flow mixing
ISSN
0301-679X
URI
https://pubs.kist.re.kr/handle/201004/129391
DOI
10.1016/j.triboint.2011.11.017
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE