Full metadata record

DC Field Value Language
dc.contributor.authorKim, Yong Jung-
dc.contributor.authorYang, Cheol-Min-
dc.contributor.authorPark, Ki Chul-
dc.contributor.authorKaneko, Katsumi-
dc.contributor.authorKim, Yoong Ahm-
dc.contributor.authorNoguchi, Minoru-
dc.contributor.authorFujino, Takeshi-
dc.contributor.authorOyama, Shigeki-
dc.contributor.authorEndo, Morinobu-
dc.date.accessioned2024-01-20T15:05:19Z-
dc.date.available2024-01-20T15:05:19Z-
dc.date.created2021-09-05-
dc.date.issued2012-03-
dc.identifier.issn1864-5631-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/129458-
dc.description.abstractSupercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectDOUBLE-LAYER CAPACITORS-
dc.subjectHIGH-POWER-
dc.subjectELECTROCHEMICAL CAPACITORS-
dc.subjectDIFFERENTIAL CAPACITANCE-
dc.subjectNANOTUBE ELECTRODES-
dc.subjectGRAPHENE-
dc.subjectULTRACAPACITORS-
dc.subjectPERFORMANCE-
dc.subjectMESOPHASE-
dc.subjectELECTROLYTES-
dc.titleEdge-Enriched, Porous Carbon-Based, High Energy Density Supercapacitors for Hybrid Electric Vehicles-
dc.typeArticle-
dc.identifier.doi10.1002/cssc.201100511-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMSUSCHEM, v.5, no.3, pp.535 - 541-
dc.citation.titleCHEMSUSCHEM-
dc.citation.volume5-
dc.citation.number3-
dc.citation.startPage535-
dc.citation.endPage541-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000301651700008-
dc.identifier.scopusid2-s2.0-84858672370-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusDOUBLE-LAYER CAPACITORS-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusELECTROCHEMICAL CAPACITORS-
dc.subject.keywordPlusDIFFERENTIAL CAPACITANCE-
dc.subject.keywordPlusNANOTUBE ELECTRODES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusULTRACAPACITORS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMESOPHASE-
dc.subject.keywordPlusELECTROLYTES-
dc.subject.keywordAuthorcarbon-
dc.subject.keywordAuthoredges-
dc.subject.keywordAuthorelectron microscopy-
dc.subject.keywordAuthorenergy storage-
dc.subject.keywordAuthorsupercapacitor-
Appears in Collections:
KIST Article > 2012
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE