Relationship between microstructure and hydrogen permeation properties in the multiphase Ni21Ti23Nb56 alloy membranes

Authors
Magnone, EdoardoJeon, Sung IlPark, Jung HoonFleury, Eric
Issue Date
2011-11-15
Publisher
ELSEVIER
Citation
JOURNAL OF MEMBRANE SCIENCE, v.384, no.1-2, pp.136 - 141
Abstract
The cooling rate has significant effects on the microstructure of Ti-Ni-Nb-based multiphase alloys. In the present study the effect of the microstructure on the hydrogen permeation properties of multiphase Ni21Ti23Nb56 alloy membrane was systematically investigated. Our result suggested a complementary relation between the quantity of the primary bcc-(Ti, Nb) solid solution phase and hydrogen permeation properties. The Ni21Ti23Nb56 alloy with about 70% surface fraction of primary phase bcc-(Nb-Ti) solid solution showed the higher hydrogen permeability value of 7.48 x 10(-8) MOM s Pa-1/2 at 450 degrees C, which is higher in value compared to Ti-Ni-Nb-based multiphase alloys reported in published works. Moreover, comparison between the present experimental data and the literature was analyzed to illustrate the capability of the proposed control of microstructure membrane for the improvement of the hydrogen permeation properties of Ti-Ni-Nb -based multiphase alloys. (C) 2011 Elsevier B.V. All rights reserved.
Keywords
TI-NI ALLOYS; PERMEABILITY; PD; TI-NI ALLOYS; PERMEABILITY; PD; Membrane; Ni-Ti-Nb system; Microstructure; Scanning electron microscopy; Hydrogen permeation
ISSN
0376-7388
URI
https://pubs.kist.re.kr/handle/201004/129804
DOI
10.1016/j.memsci.2011.09.014
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE