Effects of interfacial suboxides and dangling bonds on tunneling current through nanometer-thick SiO2 layers

Authors
Ko, EunjungLee, Kwang-RyeolChoi, Hyoung Joon
Issue Date
2011-07-20
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.84, no.3
Abstract
Quantum-mechanical tunneling of charge carriers through nanometer-thick SiO2 layers is one of the key issues in Si-based electronics. Here, we report first-principles transport calculations of charge-carrier tunneling through nanometer-thick SiO2 layers in Si/SiO2/Si structures. We find that tunneling of holes in the valence bands occurs mainly via oxygen 2p orbitals perpendicular to Si-O-Si bonds, and it can be enhanced greatly by interfacial suboxides and dangling bonds in Si/SiO2 interfaces. Electrons in the conduction bands show tunneling behaviors sensitive to their wave vectors parallel to the interfaces, reflecting the six conduction-band minima in the bulk Si. Our results provide atomistic description of tunneling currents through SiO2 layers, and suggest that leakage current will be blocked more effectively if suboxides and dangling bonds are reduced.
Keywords
ULTRATHIN GATE OXIDES; ELECTRONIC-STRUCTURE; SILICON DIOXIDE; MODELS; ULTRATHIN GATE OXIDES; ELECTRONIC-STRUCTURE; SILICON DIOXIDE; MODELS
ISSN
1098-0121
URI
https://pubs.kist.re.kr/handle/201004/130173
DOI
10.1103/PhysRevB.84.033303
Appears in Collections:
KIST Article > 2011
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE