Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells

Authors
Kwon, Ki YoungYoun, JongkyuKim, Jae HyunPark, YongjinJeon, ChulminKim, Byoung ChanKwon, YongchaiZhao, XueyanWang, PingSang, Byoung InLee, JinwooPark, Hyun GyuChang, Ho NamHyeon, TaeghwanHa, SuJung, Hee-TaeKim, Jungbae
Issue Date
2010-10
Publisher
Pergamon Press Ltd.
Citation
Biosensors and Bioelectronics, v.26, no.2, pp.655 - 660
Abstract
Nanoscale enzyme reactors (NERs) of glucose oxidase in conductive mesoporous carbons were prepared in a two-step process of enzyme adsorption and follow-up enzyme crosslinking. MSU-F-C, a mesoprous carbon, has a bottleneck pore structure with mesocellular pores of 26 nm connected with window mesopores of 17 nm. This structure enables the ship-in-a-bottle mechanism of NERs, which effectively prevents the crosslinked enzymes in mesocellular pores from leaching through the smaller window mesopores. This NER approach not only stabilized the enzyme but also expedited electron transfer between the enzyme and the conductive MSU-F-C by maintaining a short distance between them. In a comparative study with GOx that was simply adsorbed without crosslinking, the NER approach was proven to be effective in improving the sensitivity of glucose biosensors and the power density of biofuel cells. The power density of biofuel cells could be further improved by manipulating several factors, such as by adding a mediator, changing the order of adsorption and crosslinking, and inserting a gold mesh as an electron collector. (C) 2010 Elsevier B.V. All rights reserved.
Keywords
ORGANIC-SOLVENTS; SILICA; STABILIZATION; BIOCATALYSIS; STABILITY; FOAM; Biofuel cells; Biosensors; Enzyme crosslinking; Mesoporous carbon; Nanoscale enzyme reactors
ISSN
0956-5663
URI
https://pubs.kist.re.kr/handle/201004/131059
DOI
10.1016/j.bios.2010.07.001
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE