Molecular interaction mechanism in solid polymer electrolyte comprising cellulose phthalate and LiClO4

Authors
Ko, Young GunKhasbaatar, Aruukhan DashkhuuChoi, Ung SuKim, Jae-Yong
Issue Date
2010-08
Publisher
ELSEVIER
Citation
SOLID STATE IONICS, v.181, no.25-26, pp.1178 - 1182
Abstract
The analysis on molecular interaction mechanism in the polymer electrolyte film should be preceded since high mobile ions in the film are required to fabricate the high ionic-conducting solid polymer electrolyte. We focused this study on analyzing the molecular interaction mechanism in the novel solid polymer electrolyte comprising cellulose phthalate (CP) and LiClO4. Li+ cation formed not only ionic-bond with carboxyl group but also the coordination with carbonyl and ether groups in CP at the low LiClO4 concentration, while it formed only the ionic-bond at the high concentration. This behavior also influenced the ionic conductivity of the CP/LiClO4 composite that the conductivity values increase rapidly due to the decrease of the coordinations as LiClO4 concentration increases, and then decrease due to the low ionic mobility at higher LiClO4. (C) 2010 Published by Elsevier B.V.
Keywords
CONDUCTIVITY; MORPHOLOGY; Esterification; FT-IR; Ionic conductivity; Metal-polymer complexes; Solid polymer electrolyte
ISSN
0167-2738
URI
https://pubs.kist.re.kr/handle/201004/131207
DOI
10.1016/j.ssi.2010.06.036
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE