Nano-Sized Cobalt Based Fischer-Tropsch Catalysts for Gas-to-Liquid Process Applications

Authors
Kang, Jung ShikAwate, S. V.Lee, Yun JuKim, So JungPark, Moon JuLee, Sang DeukHong, Suk-InMoon, Dong Ju
Issue Date
2010-05
Publisher
AMER SCIENTIFIC PUBLISHERS
Citation
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.10, no.5, pp.3700 - 3704
Abstract
Nano-sized cobalt supported catalysts were prepared for Fischer-Tropsch synthesis in gas-to-liquid (GTL) process. The dependence of crystallite size and reducibility of Co3O4 on the supports were investigated with FTS activity. XRD peaks revealed nano crystallites (<5.47 nm) of Co3O4 crystallites. TEM showed round shaped particles with size less than 5 nm. Support with higher acidity decreased crystallite size Of Co3O4. XRD data of used catalysts showed Co3O4 crystallites smaller than 3.5 nm which do not reduce easily to Coo state. The crystallite size of Co3O4 plays a role in its reduction to Co-0. TPR results showed that the reduction temperature shifts to higher temperature due to metal-support interaction. The variation in the activity of the catalysts depends on the support which in turn affects the crystallite size, dispersion, reducibility and activity of Co species in Fischer-Tropsch Synthesis (FTS). In this study, Co/Al2O3 showed higher CO conversion than the other catalysts. However, the C5+ production was in order Co/SiO2 (78.1%) > Co/Al2O3 (70.0%) > Co/R_TiO2 (61 %) > Co/A_TiO2 (57.5%).
Keywords
Nano-Sized Cobalt Catalyst; Nano Crystallites of Co3O4; Fischer-Tropsch (FT); Gas to Liquid (GTL) Process
ISSN
1533-4880
URI
https://pubs.kist.re.kr/handle/201004/131506
DOI
10.1166/jnn.2010.2339
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE