Nonthermal starch hydrolysis using ultra high pressure: I. Effects of acids and starch concentrations

Authors
Lee, Jae-HwangChoi, Hyun-WookKim, Byung-YongChung, Myong-SooKim, Dong-SeobChoi, Sung WonLee, Dong-UnPark, Seok-JunHur, Nam-YoonBaik, Moo-Yeol
Issue Date
2006-12
Publisher
ELSEVIER
Citation
LWT-FOOD SCIENCE AND TECHNOLOGY, v.39, no.10, pp.1125 - 1132
Abstract
Corn starches with 2 mol/l hydrochloric acid (HCl), 2 mol/l sulfuric acid (H2SO4) and 2 mol/l oxalic acid (C2H2O4) were pressurized at 600 MPa for 30 min. Corn starch with C2H2O4 formed a gel after ultra-high-pressure (UHP) treatment. Corn starch with HCl showed partial disintegration but starch with H2SO4 maintained its shape. Corn starch with HCl showed higher (0.42-0.47) degree of hydrolysis compared to starch with C2H2O4 (about 0.14) and H2SO4 (0.13-0.14) regardless of increasing starch concentration up to 20 g/100 g sample. Main component of starch hydrolysate was maltose for HCl and oligosaccharides for H2SO4 and C2H2O4. Crystallinity of starch with HCl decreased with decreasing starch concentration as observed by both differential scanning calorimetry (DSC) and X-ray diffraction. Therefore, UHP can be used for nonthermal starch hydrolysis and HCl would be a good catalyst for UHP starch hydrolysis compared to H2SO4 and C2H2O4. This work provides a potential of nonthermal UHP processing for new starch hydrolysis method. (c) 2005 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Keywords
GELATINIZATION; DIGESTIBILITY; AMYLASE; GELATINIZATION; DIGESTIBILITY; AMYLASE; ultra high pressure; nonthermal processing; corn starch; starch hydrolysis
ISSN
0023-6438
URI
https://pubs.kist.re.kr/handle/201004/134935
DOI
10.1016/j.lwt.2005.07.006
Appears in Collections:
KIST Article > 2006
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE