Full metadata record

DC Field Value Language
dc.contributor.authorLee, BJ-
dc.contributor.authorLee, JC-
dc.contributor.authorKim, YC-
dc.contributor.authorLee, SH-
dc.date.accessioned2024-01-21T06:14:11Z-
dc.date.available2024-01-21T06:14:11Z-
dc.date.created2021-09-05-
dc.date.issued2004-10-
dc.identifier.issn1598-9623-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/137202-
dc.description.abstractThe atomic structural behavior of amorphous pure Ni under hydrostatic pressures has been investigated through a molecular dynamics simulation study based on a semi-empirical interatomic potential (MEAM). It was observed that the amorphous material crystallizes under hydrostatic compressive pressur e but forms nanovoids under hydrostatic tensile pressure at room temperature. These results could be explained by the volume change effect on the nucleation energy barrier during crystallization. Consistent with this explanation, stress induced increase in the energy level (decrease of energy barrier) is proposed as the main reason for the mechanically driven nanocrystallization of amorphous materials.-
dc.languageEnglish-
dc.publisherKOREAN INST METALS MATERIALS-
dc.subjectEMBEDDED-ATOM-METHOD-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectMETALLIC GLASSES-
dc.subjectALLOY-
dc.subjectNANOCRYSTALLIZATION-
dc.subjectCRYSTALLIZATION-
dc.subjectDEFORMATION-
dc.subjectTEMPERATURE-
dc.subjectNI-
dc.subjectNANOINDENTATION-
dc.titleBehavior of amorphous materials under hydrostatic pressures: A molecular dynamics simulation study-
dc.typeArticle-
dc.identifier.doi10.1007/BF03027350-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMETALS AND MATERIALS INTERNATIONAL, v.10, no.5, pp.467 - 474-
dc.citation.titleMETALS AND MATERIALS INTERNATIONAL-
dc.citation.volume10-
dc.citation.number5-
dc.citation.startPage467-
dc.citation.endPage474-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.description.journalRegisteredClassother-
dc.identifier.kciidART000945118-
dc.identifier.wosid000224764900012-
dc.identifier.scopusid2-s2.0-11144270156-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusEMBEDDED-ATOM-METHOD-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusMETALLIC GLASSES-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusNANOCRYSTALLIZATION-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusNI-
dc.subject.keywordPlusNANOINDENTATION-
dc.subject.keywordAuthorstress-induced crystallization-
dc.subject.keywordAuthoramorphous materials-
dc.subject.keywordAuthornanocrystalline-
dc.subject.keywordAuthormolecular dynamics-
dc.subject.keywordAuthornucleation-
Appears in Collections:
KIST Article > 2004
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE