Forced convection heat transfer during dendritic crystal growth: local solutions of Navier-Stokes equations

Title
Forced convection heat transfer during dendritic crystal growth: local solutions of Navier-Stokes equations
Authors
이윤우WILLIAM N. GILLRamagopal Ananth
Keywords
convection; dendritic crystal growth; Navier-Stokes; Oseen flow
Issue Date
1992-01
Publisher
Chemical engineering communications
Citation
VOL 116, NO 1, 193-200
Abstract
Numerical local solutions are obtained to the Navier-Stokes equations and energy equation for the region near the tip of a needle crystal growing in the presence of a forced flow in a melt of succinonitrile. The Navier-Stokes solution for P is essential identical with solutions using the Oseen viscous flow and Stokes flow approximation if the fluid Peclet number (Pe) is less than about 2. However, as Pe is increased, the solutions of the Stokes and Oseen viscous flow approximation overpredict the crystal Peciet number (P). The forced convection solution can be approximated by a power law form such that P=1·26St 1·06 pe 0·20 for 0·1<Pe<2·0. These forced convection solutions predict that the controlling mode of heat transfer changes when the growth velocity of the crystal is about the same as the convective velocity.
URI
http://pubs.kist.re.kr/handle/201004/21619
ISSN
00986445
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE