Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier.

Title
Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier.
Authors
김영효김세훈박종래이근용김태우권익찬정혜선정서영
Keywords
self-aggregates
Issue Date
2001-11
Publisher
Bioconjugate chemistry
Citation
VOL 12, NO 6, 932-938
Abstract
Precise control of the size and structure is one critical design parameter of micellar systems for drug delivery applications. To control the size of self-aggregates, chitosan was depolymerized with various amounts of sodium nitrite, and hydrophobically modified with deoxycholic acid to form self-aggregates in aqueous media. Formation and physicochemical characteristics of size-controlled self-aggregates were investigated using dynamic light scattering, fluorescence spectroscopy, and computer simulation method. The size of self-aggregates varied in the range of 130-300 nm in diameter, and their structures were found to depend strongly on the molecular weight of chitosan ranging from 5 to 200 kDa. Due to the chain rigidity of chitosan molecule, the structure of self-aggregates was suggested to be a cylindrical bamboolike structure when the molecular weight of chitosan was larger than 40 kDa, which might form a very poor spherical form of a birdnestlike structure. To explore the potential applications of self-aggregates as a gene delivery carrier, complexes between chitosan self-aggregates and plasmid DNA were prepared and confirmed by measuring the fluorescence intensity of ethidium bromide and electrophoresis on agarose gels. The complex formation had strong dependency on the size and structure of chitosan self-aggregates and significantly influenced the transfection efficiency of COS-1 cells (up to a factor of 10). This approach to control the size and structure of chitosan-derived self-aggregates may find a wide range of applications in gene delivery as well as general drug delivery applications.
URI
http://pubs.kist.re.kr/handle/201004/23698
ISSN
1043-1802
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE