Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells

Title
Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells
Authors
조재형김장미Joghee Prabhuram황상엽안동준하흥용김수길
Keywords
direct methanol fuel cell (DMFC); membrane electrode assembly (MEA); low-temperature decal; carbon; ionomer skin
Issue Date
2009-02
Publisher
Journal of power sources
Citation
VOL 187, NO 2, 378-386
Abstract
In this study, a low-temperature decal transfermethod is used to fabricatemembrane electrode assemblies (MEAs) and the MEAs are tested for application in a directmethanol fuel cell (DMFC). The low-temperature decal transfer uses a carbon-layered decal substrate with a structure of ionomer/catalyst/carbon/substrate to facilitate the transfer of catalyst layers from the decal substrates to the membranes at a temperature as low as 140 ◦C, and also to prevent the formation of ionomer skin layer that is known to be formed on the surface of the transferred catalyst layer. The DMFC performance of the MEA (with carbon layer) fabricated by the low-temperature decal transfer method is higher than those of MEAs fabricated by the same method without a carbon layer, a conventional high-temperature decal method, and a direct spray-coating method. The improved DMFC performance of the MEA fabricated with carbon layer by the low-temperature decal transfer method can be attributed to the absence of an ionomer skin on the catalyst layer, which can streamline the diffusion of reactants. Furthermore, the intrinsic properties of the MEA fabricated by the low-temperature decal transfer method are elucidated by field-emission scanning electron microscopy (FESEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) techniques, and cathode CO2 analysis.
URI
http://pubs.kist.re.kr/handle/201004/34959
ISSN
0378-7753
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE