Aggregation-Free Process for Functional CdSe/CdS Core/Shell Quantum Dots

Title
Aggregation-Free Process for Functional CdSe/CdS Core/Shell Quantum Dots
Authors
문지형최규실김병주윤권하성태연우경자
Keywords
aggregation-free; quantum dot; hydrodynamic diameter; surface modification; internanoparticle hydrogen bonding; steric hindrance
Issue Date
2009-04
Publisher
The journal of physical chemistry. C, Nanomaterials and Interfaces.
Citation
VOL 113, NO 17, 7114-7119
Abstract
Particle aggregation is implicated in a preparation of water-soluble functional nanoparticles and there is currently great interest in aggregation-free and water-soluble nanoparticles with a specific functionality. In this report, we present the aggregation-free surface modification process that provides water-soluble and functional quantum dots below 10 nm in hydrodynamic diameter. Our strategy is based on the reasoning that particle aggregation occurs due to polychelating internanoparticle hydrogen bonding interactions through surface molecules when they are no longer ionized. Therefore, the very strategy is to interrupt internanoparticle hydrogen bonding interactions by placing long chain hydrocarbon pillars (mercaptoundecanoic acid) which are bonded to functional molecules (folic acid or polyethylene glycol derivative) at appropriate distances on the CdSe/CdS core/shell quantum dots (QDs). The remaining QD surface area is then replaced by short-chain hydrophilic molecules (mercaptopropionic acid) endowing water solubility. However, the internanoparticle hydrogen bonding interactions, thereby resulting in aggregation, are inhibited by the steric hindrance of the already present bulky functional molecules. The current process showed an applicable feasibility for superparamagnetic iron oxide nanoparticles, too.
URI
http://pubs.kist.re.kr/handle/201004/35094
ISSN
1932-7447
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE