Structural, magnetic and electronic structure studies of NdFe1&#8722

Structural, magnetic and electronic structure studies of NdFe1&#8722; xNixO3 (0 < x < 0.3)

xNixO3 (0 < x < 0.3)
Abida BashirM. IkramRavi KumarP. Thakur채근화최원국V.R.Reddy
Electronic structure; Magnetic property; M&#65311; ssbauer studies; NEXAFS
Issue Date
Journal of physics, Condensed matter : an Institute of Physics journal
VOL 21, 325501-1-325501-10
We present here the structural, electronic structure, magnetic and M¨ossbauer studies of NdFe1&#8722;xNixO3 (0 x 0.3) samples. All the samples exhibit a single-phase orthorhombic structure with space group Pbnm. The near-edge x-ray absorption fine structure (NEXAFS) studies reveal that, with the Ni substitution at Fe sites, a new spectral feature about 1.5 eV lower than the pre-edge structure of NdFeO3 in the O K edge is observed due to the 3d contraction effect and is growing monotonically with the increase of Ni concentration. The Fe L3,2, Ni L3,2 and Nd M5,4 edges confirm the trivalent state of Fe, Ni and Nd ions. The M¨ossbauer spectra fitted with two Zeeman sextets confirm the different surroundings of Ni around Fe ions. With the increase in Ni concentration, the sextets are broadened. The increase of quadrupole splitting and the decrease of the hyperfine field suggest the change in the ordered regime of the system. The magnetic behaviour at low temperatures is explained in the context of competition among moments of rare earth (Nd) and transition metal ions (Fe/Ni). The strong paramagnetic contribution of the Nd magnetic sublattice and spin flip phenomenon is observed from the temperature dependence of zero-field-cooled and field-cooled magnetization where spin crossover is observed. The isothermal hysteresis loops show a decrease of magnetization and increase of coercivity with the increase in temperature and complements magnetization versus temperature. The results are explained on the basis of the spin reorientation phenomenon.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.