Hydrogen Embrittlement in Metallic Amorphous Alloys: An Overview

Hydrogen Embrittlement in Metallic Amorphous Alloys: An Overview
Subramanian Jayalakshmi에릭플러리
hydrogen; amorphous alloys; structure; mechanical properties; embrittlement
Issue Date
Journal of ASTM International
VOL 7, NO 3, 1-23
In hydrogen-related energy technologies, the selection of materials is critical since hydrogen can modify the initial microstructure and induce damage that could result in the reduction of mechanical properties and embrittlement. In this context, metallic amorphous alloys are viable candidates due to their high hydrogen solubility. Earlier studies demonstrated the positive interaction of hydrogen with amorphous alloys. However, similar to crystalline metals, embrittlement by hydrogen was also reported. In order to clarify the role of hydrogen in this class of alloys, we present an overview on the hydrogen interaction and embrittlement, encompassing results from published studies and from our own investigations on several Zr-, Ni-, and Ti-based amorphous alloy systems. The importance of the constituent elements and composition in determining the structure, hydrogenation kinetics, and hydrogen absorption capacity were brought out. The resistance to embrittlement varies upon the alloy system, constituent elements, and atomic packing of the amorphous alloy. In metalloid-free amorphous alloys, the bending ductility and tensile fracture strength of thin ribbons could be preserved up to a critical concentration beyond which hydrogen degradation occurs. The value of this critical concentration was found to vary from a few percent to about 45 at. % H. The mechanism of embrittlement induced by hydrogen was identified from the correlation of the observed changes in structural, thermal, and mechanical properties. It was found that hydrogen plays a prime role in altering the local atomic structure by reordering the nearest neighbor atomic configuration. The structural dilatation so produced was found to be the source of hydrogen-induced failure in these amorphous alloys.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.