ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature

Title
ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature
Authors
권병욱손동익박동희양정도최원국
Keywords
ZnO nanoparticle; 전자수송층; DSSC (Dye-sensitized solar cells); solar cell; Hydropolymer; low-temperature; IPCE
Issue Date
2010-09
Publisher
한국재료학회지; Korean Journal of Materials Research
Citation
VOL 20, NO 9, 483-487
Abstract
To fabricate TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature (200oC). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated (200oC) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density (Jsc), the open circuit potential (Voc), fill factor (ff), and efficiency (η) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/cm2, 0.56V, 0.40, and 1.12%, respectively.
URI
http://pubs.kist.re.kr/handle/201004/38283
ISSN
1225-0562
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE