Full metadata record

DC FieldValueLanguage
dc.contributor.author정헌-
dc.contributor.author양대륙-
dc.contributor.author주오심-
dc.contributor.author정광덕-
dc.date.accessioned2015-12-02T15:39:25Z-
dc.date.available2015-12-02T15:39:25Z-
dc.date.issued201006-
dc.identifier.citationVOL 31, NO 5, 1241-1246-
dc.identifier.issn0253-2964-
dc.identifier.other33358-
dc.identifier.urihttp://pubs.kist.re.kr/handle/201004/38341-
dc.description.abstractTernary Cu/ZnO/Al2O3 catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/Al2O3 was maximized to be 30.6 m2/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/Al2O3. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 ㎡/gcat was to be 2.67 ± 0.27 mmol/m2.h in methanol synthesis at the condition of 250 ℃, 50 atm and 12,000 mL/gcat. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/Al2O3. The pH of the precipitate solution during the aging time can be maintained at 7 by CO2 bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.-
dc.publisherBulletin of the Korean Chemical Society-
dc.subject메탄올-
dc.subject합성가스-
dc.subject전환반응-
dc.subjectMethanol synthesis-
dc.subjectCu/ZnO/Al2O3 catalyst-
dc.subjectMalachite-
dc.subjectGeorgeite-
dc.subjectAging time-
dc.titleThe Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface area in Methanol Synthesis-
dc.typeArticle-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE