State-of-the-Art Technologies: Brain-Machine Interface in Neurorehabilitation

State-of-the-Art Technologies: Brain-Machine Interface in Neurorehabilitation
Issue Date
서울의대 재활의학교실 연수강좌
In May of 2001, Jesse Sullivan, a fifty-five-year-old power-company electrician, accidentally touched a live power line carrying 7200 volts of electricity and had to have both arms immediately amputated at the shoulder. Seven weeks later in November of 2001, Sullivan volunteered to be a guinea pig to test a new experimental myoelectric arm which had been developed by a joint team of physicians and biomedical engineers from Northwestern University and the Rehabilitation Institute of Chicago. During the operative procedure, a surgeon on the team decided to reroute the ulnar, radial, median, and musculocutaneous nerves from Sullivan’s left-shoulder stump to his pectoral muscle, which was of no use to Sullivan in its original form. With the brain-muscle connection re-established at the pectoral muscle, the myoelectric signals were detected from Sullivan’s chest skin whenever he intended to move his nonexisting wrist and hand. Engineers on the team developed a prosthetic arm which could be controlled by the myoelectric signal acquired from Sullivan’s chest [1]. The result was that Sullivan became the world’s first “bionic” man with an ability to move his prosthetic arm using nothing other than his own intuition (Figure 1).
Appears in Collections:
KIST Publication > Conference Paper
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.