A subtractively optimized DNA microarray using non-sequenced genomic probes for the detection of food-borne pathogens

Title
A subtractively optimized DNA microarray using non-sequenced genomic probes for the detection of food-borne pathogens
Authors
이진용김병찬장관종안주명류지훈장효일구만복
Keywords
Food-borne pathogen; DNA microarray chip; Non-sequenced genomic DNA probe; Cross-hybridization; Multiplexed detection
Issue Date
2011-05
Publisher
Applied biochemistry and biotechnology
Citation
VOL 164, NO 2, 183-193
Abstract
In this study, we present the successful detection of food-borne pathogens using randomly selected non-sequenced genomic DNA probes-based DNA microarray chips. Three food-borne pathogens, Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), and Bacillus cereus, were subjected for the preparation of the DNA microarray probes. Initially, about 50 DNA probes selected randomly from non-sequenced genomic DNA of each pathogen were prepared by using a set of restriction enzyme pairs. The proto-type of DNA microarray chip for detecting three different pathogens simultaneously was fabricated by using those DNA probes prepared for each pathogen. This proto-type DNA microarray has been tested with three target pathogens and additional seven bacteria, and successfully verified with a few crosshybridized probes. After this primary verification of the DNA microarray hybridization, this proto-type DNA microarray chip was redesigned and successfully optimized by eliminating a few cross-hybridized probes. The specificity of this redesigned DNA microarray chip to each pathogen was confirmed without any serious cross-hybridizations, and its multiplexing capability in its pathogen detection was found to be possible. This randomly selected nonsequenced genomic DNA probes-based DNA microarray was successfully proved to be the high-throughput simultaneous detection chip for the detection of food-borne pathogens, without knowing the exact sequence information of the target bacteria. This could be the first fabrication of DNA microarray chip for the simultaneous detection of different kinds of food-borne pathogens.
URI
http://pubs.kist.re.kr/handle/201004/39571
ISSN
0273-2289
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE