Indium-free, acid-resistant anatase Nb-doped TiO2 electrodes activated by rapid-thermal annealing for cost-effective organic photovoltaics

Title
Indium-free, acid-resistant anatase Nb-doped TiO2 electrodes activated by rapid-thermal annealing for cost-effective organic photovoltaics
Authors
박준혁강성준나석인이현휘김성웅H. Hosono김한기
Keywords
Nb-TiO2; ITO; Anatase; Acidic PEDOT:PSS; Organic solar cells
Issue Date
2011-08
Publisher
Solar energy materials and solar cells
Citation
VOL 95, NO 8, 2178-2185
Abstract
Indium-free and acid-resistant anatase Nb-doped TiO2 (NTO) electrodes are promising as economical substitutes for high-cost Sn-doped In2O3 (ITO) films used in organic photovoltaics. By rapid-thermal annealing under an ambient vacuum, an insulating amorphous NTO film of low transparency was changed dramatically into a transparent and conductive anatase NTO electrode. Metallic conductivity of the annealed NTO electrode could be attributed to formation of the anatase phase and activation of the Nb dopant. Based on synchrotron X-ray scattering and high-resolution transmission electron microscopy, the electrical properties of the NTO electrode could be correlated with the microstructure of the NTO film. The acid-stability of NTO film also supports its use as a substitute for ITO electrode. Unlike Ga:ZnO and Al:ZnO films, which were easily etched by acidic PEDOT:PSS solution, the NTO film was stable against this reagent. Importantly, the annealing temperature influenced the performance of the organic solar cell fabricated with the NTO electrode. This indicates that activation of Nb dopants and formation of the anatase phase play an important role in the extraction of carrier from the organic layer to the anode electrode.
URI
http://pubs.kist.re.kr/handle/201004/39887
ISSN
0927-0248
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE