Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor

Title
Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor
Authors
황교선이민혁이주희여운석이정훈김강민강지윤김태송
Keywords
Microcantilever; Resonant frequency; Dinitrotoluene; Electronic nose; Artificial olfactory system
Issue Date
2011-12
Publisher
Biosensors and bioelectronics
Citation
VOL 30, NO 1, 249-254
Abstract
We reported that peptide could be utilized as receptor molecule in the gas phase for application in micro/nano sensors by using a specific peptide that recognizes 2,4-dinitrotoluene at room temperature and in an atmospheric environment and measuring changes in the resonant frequency of the peptide immobilized microcantilevers. By using these peptides as receptors on a microcantilever sensor, we were able to experimentally detect 2,4-dinitrotoluene (DNT) vapor at concentrations as low as parts per billion (ppb) in the gas phase. While resonant frequency changes after binding between 2,4-DNT and the specific peptide receptor that was immobilized on microcantilevers were observed, the resonant frequency of DNT nonspecific peptide immobilized microcantilever did not change when exposed to 2,4-DNT vapor. The limit of detection (LOD) was calculated to be 431 ppt of limit of detection is numerically expected by experimental based on an equation that describes the relationship between the noise-equivalent analyte concentration. These results indicate that the peptide receptors hold great promise for use in the development of an artificial olfactory system and electronic nose based on micro/nanotechnology for monitoring various chemical vapors in the gas phase such as explosive mixtures of chemicals and/or volatile organic compounds.
URI
http://pubs.kist.re.kr/handle/201004/41033
ISSN
0956-5663
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE