Effect of deactivation and reactivation of palladium anode catalyst on performance of direct formic acid fuel cell (DFAFC)

Title
Effect of deactivation and reactivation of palladium anode catalyst on performance of direct formic acid fuel cell (DFAFC)
Authors
백승민한종희김진수권용채
Keywords
Direct formic acid fuel cell; Palladium deactivation; Palladium reactivation; Palladium electroredox reaction; ATR-FTIR
Issue Date
2011-11
Publisher
International journal of hydrogen energy
Citation
VOL 36, NO 22, 14719-14724
Abstract
In the present study, degradation and recovery in cell performance of direct formic acid fuel cells (DFAFCs) are investigated. For DFAFC tests, palladium (Pd) and platinum (Pt) are used as anode and cathode catalysts, respectively, and are applied to a Nafion membrane by catalyst-coated membrane (CCM) spraying. As multiple repeated DFAFC operations are performed, the cell performance of DFAFC is steadily degraded. This behavior is ascribed to the electrooxidation of Pd into Pd-OH, which occurs between 0.1 and 0.55 V. To investigate the dependency of the cell performance on the Pd-OH and to evaluate how the cell performance is regenerated, cyclic voltammetry (CV) tests are executed. In CV experiments where the voltages applied to the DFAFC single cell are lower than 0.7 V vs. DHE, the cell performance is further deactivated due to continuous production of Pd-OH. Conversely, in CV experiments where the voltage is higher than 0.9 V vs. DHE, cell performance is reactivated due to redox reactions of Pd-OH into Pd-O and Pd-O into Pd. ATR-FTIR and XPS are used to confirm the transformations of Pd.
URI
http://pubs.kist.re.kr/handle/201004/41068
ISSN
0360-3199
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE