Gas-generating polymeric microspheres for long-term and continuous in vivo ultrasound imaging

Title
Gas-generating polymeric microspheres for long-term and continuous in vivo ultrasound imaging
Authors
민현수강은아구희범이재영김광명박랭운김인산최윤석권익찬한문희
Keywords
Ultrasound imaging; Contrast agent; Gas-generating polymer; Polycarbonate; Microsphere
Issue Date
2012-01
Publisher
Biomaterials
Citation
VOL 33, NO 3, 936-944
Abstract
Ultrasound (US) imaging is one of the most common biomedical imaging methods, due to the easy assessment and noninvasive way. For more precise and accurate US imaging, many contrast agents have been developed in a form of microbubbles composed of inner gas and shell materials. However, microbubbles showed undesirable short half-life under acoustic field during US imaging and insufficient in vivo stability in blood flow due to diffusion or bubble destruction. Therefore, the improvement of the half-life and stability of microbubbles under in vivo condition is highly needed for long-term in vivo US imaging. Herein, we developed rationally designed gas-generating polymeric microsphere (GGPM) that can produce microbubbles without encapsulation of gas for long-term and continuous US imaging. The poly(cholesteryl γ-butyrolactone-b-propylene oxide), poly(CB-PO), with carbonate side chains was synthesized as gas-generating polymer by ring-opening polymerization of cholestryl g-butyrolactone (CB) and propylene oxide (PO). As optimal structure for intense US signal generation, porous GGPMs (p-GGPMs) with the average size about 3-5 μm were prepared with poly(CB-PO) by double emulsion method. These p-GGPMs generated continuous US signals over 70 min, while the signals from Sonovue , a commercial US contrast agent were completely attenuated within 15 min. This long-term signal duration of p-GGPM was also reproduced when they were subcutaneously injected under the skin of mouse. Moreover, as advanced in vivo application, the fine US imaging of heart in rat was enabled by intravenous injection of p-GGPM. Therefore, these overall results showed the great potential of p-GGPM as gas-generating US contrast agent for in vivo biomedical imaging and diagnosis.
URI
http://pubs.kist.re.kr/handle/201004/41350
ISSN
0142-9612
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE