mGRASP enables mapping mammalian synaptic connectivity with light microscopy

Title
mGRASP enables mapping mammalian synaptic connectivity with light microscopy
Authors
김진현Zhao, TingPetralia, Ronald S.Yu, YangPeng, HanchuanMyers, EugeneMagee, Jeffrey C
Issue Date
2012-01
Publisher
Nature methods
Citation
VOL 9, NO 1, 96-102
Abstract
The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used to detect the location of synapses quickly, accurately and with high spatial resolution. The method has been previously applied in the nematode and the fruit fly but requires substantial modification for use in the mammalian brain. We developed mammalian GRASP (mGRASP) by optimizing transmembrane split-GFP carriers for mammalian synapses. Using in silico protein design, we engineered chimeric synaptic mGRASP fragments that were efficiently delivered to synaptic locations and reconstituted GFP fluorescence in vivo. Furthermore, by integrating molecular and cellular approaches with a computational strategy for the three-dimensional reconstruction of neurons, we applied mGRASP to both long-range circuits and local microcircuits in the mouse hippocampus and thalamocortical regions, analyzing synaptic distribution in single neurons and in dendritic compartments.
URI
http://pubs.kist.re.kr/handle/201004/42118
ISSN
15487091
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE