Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine

Title
Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine
Authors
Elena V. Romanova이지은Neil L. KelleherJonathan V. SweedlerJosua M. Gulley
Keywords
addiction; mass spectrometry; neurochemical adaptation; peptidomics; principal component analysis; proteomics
Issue Date
2012-10
Publisher
Journal of neurochemistry
Citation
VOL 123, NO 2, 276-287
Abstract
Repeated exposure to amphetamine (AMPH) induces longlasting behavioral changes, referred to as sensitization, that are accompanied by various neuroadaptations in the brain. To investigate the chemical changes that occur during behavioral sensitization, we applied a comparative proteomics approach to screen for neuropeptide changes in a rodent model of AMPH-induced sensitization. By measuring peptide profiles with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and comparing signal intensities using principal component analysis and variance statistics, subsets of peptides are found with significant differences in the dorsal striatum, nucleus accumbens, and medial prefrontal cortex of AMPH-sensitized male Sprague– Dawley rats. These biomarker peptides, identified in follow-up analyses using liquid chromatography and tandem mass spectrometry, suggest that behavioral sensitization to AMPH is associated with complex chemical adaptations that regulate energy/metabolism, neurotransmission, apoptosis, neuroprotection, and neuritogenesis, as well as cytoskeleton integrity and neuronal morphology. Our data contribute to a growing number of reports showing that in addition to the mesolimbic dopamine system, which is the best known signaling pathway involved with reinforcing the effect of psychostimulants, concomitant chemical changes in other pathways and in neuronal organization may play a part in the overall effect of chronic AMPH exposure on behavior.
URI
http://pubs.kist.re.kr/handle/201004/43261
ISSN
00223042
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE