Structural and magnetic properties of electrospun FeCoNi magnetic nanofibers with nanogranular phases

Structural and magnetic properties of electrospun FeCoNi magnetic nanofibers with nanogranular phases
Ji Hea Park권순철김상우
nanofibers; FeCoNi alloy; Structural properties; magnetic properties; electrospinning; nanogranular phases; Saturation magnetization; Coercivity
Issue Date
Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
VOL 14, NO 2, 729-1-729-9
Structural and magnetic properties of silicon/aluminum-added and -free FeCoNi magnetic alloy nanofibers with nanogranular phases prepared by electrospinning and subsequent annealing of the PVP-blended ternary metal precursors in hydrogen atmosphere were investigated. The FeCoNi magnetic alloy nanofibers with evenly distributed nanocrystalline phases were formed, which are identified as γ-Fe1−xNix binary phase with face-centered cubic structure and α-CoFe phase with body-centered cubic structure. At elevated temperature, the α → γ structural martensitic transformation in the FeCoNi ternary alloys occurred due to the inhomogeneities in composition of the matrix during annealing of the alloy with metastable α-phase. In the Si/Al-added FeCoNi nanofibers, more than two phases with complicated-boundaries of the grains in and/or outside the nanofibers were formed as crystalline phases and amorphous phase. The amorphous phase consisted of Si and/or Al acted as an inhibitor diminishing α → γ transformation as well as an interparticle insulation layer. At low annealing temperature of 450 °C, the Si/Al-added nanofiber mainly consisted of metastable α-phase with a low-crystallinity surface structure and very small diameter of 13 nm was formed and showed an unexpectedly high coercivity, which attributed to the surface effects and/or high surface/volume ratio.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.