Multifunctional nanoparticles for multimodal imaging and theragnosis

Title
Multifunctional nanoparticles for multimodal imaging and theragnosis
Authors
이동은Heebeom Koo선인철류주희김광명권익찬
Keywords
Drug Delivery Systems; Diagnostic Imaging; Nanomedicine
Issue Date
2012-04
Publisher
Chemical society reviews
Citation
VOL 41, NO 7, 2656-2672
Abstract
Nanomedicine is the biomedical application of nanoscale materials for diagnosis and therapy of disease. Recent advances in nanotechnology and biotechnology have contributed to the development of multifunctional nanoparticles as representative nanomedicine. They were initially developed to enable the target-specific delivery of imaging or therapeutic agents for biomedical applications. Due to their unique features including multifunctionality, large surface area, structural diversity, and long circulation time in blood compared to small molecules, nanoparticles have emerged as attractive preferences for optimized therapy through personalized medicine. Multimodal imaging and theragnosis are the cutting-edge technologies where the advantages of nanoparticles are maximized. Because each imaging modality has its pros and cons, the integration of several imaging agents with different properties into multifunctional nanoparticles allows precise and fast diagnosis of disease through synergetic multimodal imaging. Moreover, nanoparticles are not only used for molecular imaging but also applied to deliver therapeutic agents to the disease site in order to accomplish the simultaneous imaging and therapy called theragnosis. This tutorial review will highlight the recent advances in the development of multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine.
URI
http://pubs.kist.re.kr/handle/201004/43327
ISSN
03060012
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE