Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in Lithium-ion secondary batteries

Title
Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in Lithium-ion secondary batteries
Authors
Hee-Kook KangSeong-Rae Lee조원일조병원
Keywords
anode; lithium ion battery; Si-Fe composite; multilayer
Issue Date
2013-02
Publisher
Physical chemistry chemical physics : PCCP
Citation
VOL 15, NO 5, 1569-1577
Abstract
A buffer-strengthened Si/Fe multilayer film, consisting of amorphous silicon layers and polycrystalline Fe layers, is investigated as the anode for Li-ion batteries. This film can achieve a stable cycle-life performance with a high capacity. Decreasing the thickness of the Fe layer can lead to a higher capacity, which is related to the fast transport of the Li ion, but the cyclic performance deteriorates with repeated cycling. In contrast, increasing the thickness of the Fe buffer layers and the number of deposit stacks improves the cycle life with high reversibility. Because of the strain in the Si layers suppressed by the primary multilayer structure, the long-term strength is preserved and the substantial fracture toughness is enhanced by the increasing numbers of effective grain boundaries and interfacial layers. In addition, we demonstrate that the Ti underlayer promotes the electrochemical properties in the Si/Fe multilayer for various Fe layer thicknesses because of the enhanced adhesion of the interfacial electrode and current collector. The mechanically optimized Si/Fe multilayer films can have superior cycle-life performances and higher capacities. Notably, the 16-bilayer deposited electrode exhibits an excellent capacity retention of ~95% with ~204 mAh g-1 over 300 cycles at a 1 C rate.
URI
http://pubs.kist.re.kr/handle/201004/44696
ISSN
14639076
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE