Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: Batch and fixed-bed column studies

Title
Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: Batch and fixed-bed column studies
Authors
안병렬손현진정재식최재우이상협홍석원
Keywords
Calcium competition; Copper sorption; Fixed-bed column; Hydrogen alginate; Regeneration
Issue Date
2013-10
Publisher
Chemical engineering journal
Citation
VOL 232, 51-58
Abstract
The characteristics of alginate beads in calcium (Ca2+) and hydrogen (H+) form were studied with respect to the uptake of copper ions (Cu2+) via batch and fixed-bed column experiments. The maximum Cu2+ sorption capacities (Qmax) of calcium and hydrogen alginates (abbreviated as CA and HA, respectively) were found to be 107 mg/g and 189 mg/g, respectively. At pH 5, more than 95% of Cu2+ was removed, but the amount of Cu2+ sorbed onto CA beads was significantly lowered at pH 2 owing to the pKa value of carboxylic acid. When Ca2+, as a competing ion, was present in solution at a molar ratio of Ca2+ to Cu2+ equal to 8, Qmax was drastically decreased to 20 mg/g. A faster equilibrium time (24 h) was also observed for HA beads compared to CA beads (48 h). In a fixed-bed column packed with CA beads, the breakthrough of Cu2+ occurred immediately with the presence of Ca2+ in the model wastewater. Using HA beads, however, the first breakthrough of Cu2+ appeared after 900 bed volumes. These results suggested that HA beads were more effective than CA beads in reducing the adverse influence of competing cations such as Ca2+ during the initial period of Cu2+ sorption. Moreover, the breakthrough of Cu2+ occurred later than that of Ca2+ due to a higher selectivity of Cu2+ over Ca2+, which was confirmed by a separation factor (αCu/Ca, 10.3) of HA beads. In addition, their reusability was confirmed via ten regeneration cycles.
URI
http://pubs.kist.re.kr/handle/201004/45272
ISSN
13858947
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE