Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy

Title
Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy
Authors
Xiang Lan Wu김종호구희범배상문신혜리김민상이병헌박랑운김인산최귀원권익찬김광명이두성
Issue Date
2010-02
Publisher
Bioconjugate chemistry
Citation
VOL 21, NO 2, 208-213
Abstract
Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(D,L-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly( -amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive APPEG- PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.
URI
http://pubs.kist.re.kr/handle/201004/45586
ISSN
1043-1802
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE